Packing circles in 2D surface
Generating Reaction Library Compounds
%matplotlib inline
import matplotlib.pyplot as plt
# data
import numpy as np
import pandas as pd
# useful
import re, glob, os
from tqdm.auto import tqdm
from pathlib import Path
# misc
from scipy.spatial.distance import pdist
np.random.seed(3141519)
Motivation
Packing circle is a common problem shows up in molecular modeling. For example, when we arrange lipid molecules in membrane bilayer, we are essentially packing circular areas in 2D box. One could use Monte-carlo simulation appraoch to pack these molecules, but it is a time consuming and compute intensive. Let's explore algorithmic ways to arrange these circles in 2D area, which will be an efficient approach.
Here, I'm going to follow the algorithm proposed by Weixin Wang. In short, the algorithm attempt to add externally tangential circles to two circles that are already added. The algorithm uses so-called "front-chain", which holds the list of circles at the outer most edges and attempt to extend the chain.
import math
n_circles = 1000
radii = [np.random.randint(1, 3) for i in range(n_circles)]
class Circle:
def __init__(self, x, y, r):
self.x = x
self.y = y
self.r = r
@property
def center(self):
return (self.x, self.y)
For this excercise, let's try to add 100 circles with random radii. We defined a simple Circle
class to hold information about circle.
First thing we will have to do is to lay out three initial circles. The first two circles are straightforward; first cicles is placed on the origin (0, 0) and the second circles is placed on the X-axis at $(r_0 + r_1, 0)$.
c1 = Circle(0, 0, radii[0])
c2 = Circle(radii[0] + radii[1], 0, radii[1])
circles = [c1, c2]
chain = [0, 1, 0]
The third circle is placed as tangent to the first two circles. To find the center of the third circle, we need to solve the systems of equation using the following relationship; $(x_3, y_3)$ is distance of $(r_1 + r_3)$ from the center of the first circle and $(x_3, y_3)$ is distance of $(r_2 + r_3)$ from the center of the second circle.
$ (x_3 - x_1)^2 + (y_3 - y_1)^2 = (r_1 + r_3)^2 \\ (x_3 - x_2)^2 + (y_3 - y_2)^2 = (r_2 + r_3)^2 $
This can be done trivially using sympy
package
import sympy
from sympy import solve_poly_system
from sympy.abc import x, y
def tangent_circle_sympy(c1, c2, r3):
x1, y1, r1 = c1.x, c1.y, c1.r
x2, y2, r2 = c2.x, c2.y, c2.r
r1 += r3
r2 += r3
eq1 = sympy.Eq((x - x1)**2 + (y - y1)**2, r1**2)
eq2 = sympy.Eq((x - x2)**2 + (y - y2)**2, r2**2)
p3 = solve_poly_system([eq1, eq2], x, y)
return p3
tangent_circle_sympy(c1, c2, radii[2])
Analytically, an externally tangent circle, $C_C$ to the two circles (tangent to each other), $C_A$ and $C_B$, can be found by finding an intersection point of two circles having same center as $C_A$ and $C_B$ but larger radii $r_A + r_C$ and $r_B + r_C$.
The detailed derivation on how to find the intersection points can be found in Paul Bourke's note: http://paulbourke.net/geometry/circlesphere/
from math import sqrt
def tangent_circle(c0, c1, r):
r0 = c0.r + r
r1 = c1.r + r
x0, y0 = c0.center
x1, y1 = c1.center
d = sqrt((x0 - x1)**2 + (y0 - y1)**2)
a = (r0*r0 - r1*r1 + d*d) / (2 * d)
h = sqrt(r0*r0 - a*a)
x2 = x0 + a * (x1 - x0) / d
y2 = y0 + a * (y1 - y0) / d
p3 = (
(x2 + h * (y1 - y0) / d, y2 - h * (x1 - x0) / d),
(x2 - h * (y1 - y0) / d, y2 + h * (x1 - x0) / d)
)
theta1 = math.atan2(p3[0][1]-y0, p3[0][0]-x0)
theta2 = math.atan2(p3[1][1]-y0, p3[1][0]-x0)
if theta2 > theta1:
p3 = (p3[1], p3[0])
return p3
p3 = tangent_circle(c1, c2, radii[2])
print(p3)
Either approach works, but the latter will run faster, so we will use the analytical function.
Now, let's add the third circle and visualize the circles as well as the "front-chain".
c3 = Circle(p3[0][0], p3[0][1], radii[2])
circles = [c1, c2, c3]
chain = [0, 1, 2, 0]
def draw_circles(circles, circle_chain=[], show_label=False):
fig, ax = plt.subplots(figsize=(8, 8)) # note we must use plt.subplots, not plt.subplot
xmin, xmax = 999, -999
ymin, ymax = 999, -999
for i, c in enumerate(circles):
patch = plt.Circle(c.center, c.r, color='gray')
if c.x - c.r < xmin: xmin = c.x - c.r
if c.x + c.r > xmax: xmax = c.x + c.r
if c.y - c.r < ymin: ymin = c.y - c.r
if c.y + c.r > ymax: ymax = c.y + c.r
ax.add_patch(patch)
if show_label:
ax.text(c.x - 0.1, c.y - 0.1, f'C_{i}')
line_x = [circles[idx].x for idx in circle_chain]
line_y = [circles[idx].y for idx in circle_chain]
ax.plot(line_x, line_y, marker='o')
xwidth = xmax - xmin
ywidth = ymax - ymin
xcenter = xmin + xwidth / 2
ycenter = ymin + ywidth / 2
xwidth = ywidth = max(xwidth, ywidth)
ax.set_xlim(xcenter - xwidth / 2, xcenter + xwidth / 2)
ax.set_ylim(ycenter - ywidth / 2, ycenter + ywidth / 2)
plt.show()
draw_circles(circles, chain, show_label=True)
Add more circles
Let's add more circles and update front-chain according to the algorithm described in paper. Following is quoted verbatim from the paper.
1) Calculate the center of $C_i$ according to the radius $r_i$ and the tangency of circle $C_i$ to $C_m$ and $C_n$. The circles $C_m$ and $C_n$ are the circles next to each other in the front-chain.
2) Search the front-chain and find out the circle $C_j$ intersecting with $C_i$.
3) If $C_i$ does not intersect with any circle $C_j$ in the front-chain, $C_i$ is added to the front-chain directly, and packing $C_i$ is terminated. The front-chain is updated to include $C_i$, such that $\{\cdots C_m \leftrightarrow C_n \cdots\}$ becomes $\{\cdots C_m \leftrightarrow C_i \leftrightarrow C_n \cdots\}$
4) If $C_i$ intersects with $C_j$, and $C_j$ is a circle after $C_n$ on the front-chain, then the segments from $C_m$ to $C_j$ have to be deleted from the front-chain and the circle $C_n$ is replaced by $C_j$. Go to step 1. A new position of $C_i$ tangent to the two circles $C_m$ and $C_n$ will be calculated.
5) If $C_i$ intersects with $C_j$, and $C_j$ is a circle before $C_m$ on the front-chain, then the segments from $C_j$ to $C_m$ have to be deleted from the front-chain and the circle $C_m$ is replaced by $C_j$. Go to step 1. A new position of $C_i$ tangent to the two circles $C_m$ and $C_n$ will be calculated.
def circle_intersect(circle1, circle2, test_only=False):
"""
Intersection points of two circles using the construction of triangles
as proposed by Paul Bourke, 1997.
http://paulbourke.net/geometry/circlesphere/
"""
x0, y0 = circle1.x, circle1.y
x1, y1 = circle2.x, circle2.y
r0 = circle1.r
r1 = circle2.r
d = sqrt((x0 - x1)**2 + (y0 - y1)**2)
if d > (r0 + r1):
return -1, None # do not intersect
elif d <= abs(r1 - r0):
return -2, None # one circle is contained within the circle
if d == (r0 + r1) or d == (r0 - r1):
CASE = 1
else:
CASE = 2
if test_only:
return CASE, None
a = (r0*r0 - r1*r1 + d*d) / (2 * d)
h = sqrt(r0*r0 - a*a)
x2 = x0 + a * (x1 - x0) / d
y2 = y0 + a * (y1 - y0) / d
I1 = (x2 + h * (y1 - y0) / d, y2 - h * (x1 - x0) / d)
if CASE == 1:
return CASE, (I1,)
I2 = (x2 - h * (y1 - y0) / d, y2 + h * (x1 - x0) / d)
theta1 = math.degrees(math.atan2(I1[1]-y0, I1[0]-x0))
theta2 = math.degrees(math.atan2(I2[1]-y0, I2[0]-x0))
if theta2 > theta1:
I1, I2 = I2, I1
return CASE, (I1, I2)
def tangent_circle_center(circle1, circle2, radius3):
"""
find center of circle tangent to both circle1 and circle2
circle1 and circle2 is assumed to be tangent
"""
x0, y0 = circle1.x, circle1.y
x1, y1 = circle2.x, circle2.y
r0 = circle1.r + radius3
r1 = circle2.r + radius3
d = sqrt((x0 - x1)**2 + (y0 - y1)**2)
a = (r0*r0 - r1*r1 + d*d) / (2 * d)
h = sqrt(r0*r0 - a*a)
x2 = x0 + a * (x1 - x0) / d
y2 = y0 + a * (y1 - y0) / d
I1 = (x2 + h * (y1 - y0) / d, y2 - h * (x1 - x0) / d)
I2 = (x2 - h * (y1 - y0) / d, y2 + h * (x1 - x0) / d)
torque = (x1-x0)*(I1[1]-y0)-(y1-y0)*(I1[0]-x0)
if torque > 0:
I1, I2 = I2, I1
return I1, I2
def add_circle(circles, chain, index, radius):
c_m = circles[chain[index]]
c_n = circles[chain[index+1]]
p3 = tangent_circle_center(c_m, c_n, radius)
c_i = Circle(p3[0][0], p3[0][1], radius)
update = False
for i, idx in enumerate(chain[:-1]):
if i == index or i == index+1:
continue
if i == 0 and index + 1 == len(chain) - 1:
continue
c_j = circles[idx]
CASE, _ = circle_intersect(c_i, c_j, test_only=True)
if CASE > 1:
distance_left = index - i if index - i > 0 else index - i + len(chain) - 1
distance_right = i - index - 1 if i - index - 1 > 0 else i - index - 1 + len(chain) - 1
left = distance_left < distance_right
#print(left, chain, chain[index], chain[i], i, index)
if left:
if i < index:
chain = chain[:i+1] + chain[index+1:]
else:
chain = chain[i:] + chain[index+1:i] + [chain[i]]
else:
if i > index:
chain = chain[:index+1] + chain[i:]
else:
chain = chain[i:index+1] + [chain[i]]
if index > len(chain) - 2:
index = 0
return add_circle(circles, chain, index, radius)
circles.append(c_i)
chain = chain[:index+1] + [len(circles)-1] + chain[index+1:]
return circles, chain
Now we can repeatedly call above function to add circles to our
c3 = Circle(p3[0][0], p3[0][1], radii[2])
circles = [c1, c2, c3]
chain = [0, 1, 2, 0]
index = 0
for i in range(100):
circles, chain = add_circle(circles, chain, index, radii[3 + i])
index += 1
if index > len(chain) - 2:
index = 0
draw_circles(circles, chain, show_label=True)
And here's a little animation of the process.
"""
A simple example of an animated plot
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig, ax = plt.subplots(figsize=(8, 8)) # note we must use plt.subplots, not plt.subplot
xmin, xmax = 999, -999
ymin, ymax = 999, -999
line, = ax.plot([], [])
c3 = Circle(p3[0][0], p3[0][1], radii[2])
circles = [c1, c2, c3]
chain = [0, 1, 2, 0]
index = 0
ax.set_xlim(-20, 20)
ax.set_ylim(-20, 20)
def animate(index):
global circles, chain
if index > len(chain) - 2:
index = 0
circles, chain = add_circle(circles, chain, index, radii[3 + index])
#line.set_xdata(circles[-1].x)
#line.set_ydata(circles[-1].y)
patch = plt.Circle(circles[-1].center, circles[-1].r, color='gray')
ax.add_patch(patch)
x = []
y = []
for idx in chain:
x.append(circles[idx].x)
y.append(circles[idx].y)
x.append(circles[chain[0]].x)
y.append(circles[chain[0]].y)
line.set_data(x, y)
return line,
#Init only required for blitting to give a clean slate.
def init():
x = []
y = []
for i in range(3):
patch = plt.Circle(circles[i].center, circles[i].r, color='gray')
ax.add_patch(patch)
x.append(circles[i].x)
y.append(circles[i].y)
x.append(circles[0].x)
y.append(circles[0].y)
line.set_data(x, y)
return line,
#ani = animation.FuncAnimation(fig, animate, np.arange(1, 200), init_func=init,
# interval=25, blit=False)
ani = animation.FuncAnimation(fig, animate, np.arange(1, 100), interval=350,
init_func=init, blit=True)
plt.close()
from IPython.display import HTML
HTML(ani.to_html5_video())